Mutual Exchange Growth of Zintl Eu₃In₂As₄ and Eu₅In₂As₆ Nanowires by Molecular Beam Epitaxy

Man Suk Song,^{1,*} Lothar Houben,² Yufei Zhao,¹ Nadav Rothem,³ Ambikesh Gupta, ¹ Binghai Yan, ¹ Beena Kalisky,³ Haim Beidenkopf, and Hadas Shtrikman¹

¹Department of Condensed Matter Physics, Weizmann Institute of Science, Rehovot, Israel ²Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel

³Department of Physics and Institute of Nanotechnology and Advanced Materials, Bar-Ilan

University, Ramat Gan, Israel.

*E-mail : man-suk.song@weizmann.ac.il

Eu-based Zintl compounds have emerged as magnetic topological materials due to their antiferromagnetic (AFM) order and strong spin-orbit coupling [1]. To harness these properties and realize quantum devices, atomic-scale precision and extremely low defect densities in crystal growth are a prerequisite. We report the successful synthesis of Zintl-phase Eu₃In₂As₄ and Eu₅In₂As₆ nanowires (NWs) using molecular beam epitaxy (MBE) through a mutual cation exchange mechanism [2]. Starting with wurtzite (WZ) InAs and zincblende (ZB) InAsSb NWs grown on InAs substrates, we introduced Eu and As flux during MBE growth, which facilitated the exchange of In atoms with Eu atoms within the InAs lattice. This process resulted in the formation of single-crystallite Eu₃In₂As₄ and Eu₅In₂As₆ along the core NWs. High-resolution transmission electron microscopy (HRTEM) and energydispersive X-ray spectroscopy (EDS) analyses provided information on their atomic coordination and composition, confirming the structural transformation within the NWs (Figure 1). The morphology of Eu₃In₂As₄ grains originates from two distinctive orientational relationships between the orthorhombic Eu₃In₂As₄ and the underlying InAs. In contrast, Eu₅In₂As₆ grains extend in four directions corresponding to the tetrahedral faces of the ZB core, exhibiting an anisotropic growth preference along the *c*-axis of their orthorhombic crystal structure. Both Eu₃In₂As₄ and Eu₅In₂As₆ NWs exhibited AFM ordering, as evidenced by magnetic susceptibility measurements such as a magnetic property measurement system (MPMS) and a scanning superconducting quantum interference device (SQUID). The ability to convert InAs NWs into different Zintl phases by selecting the crystal structure of core demonstrates the versatility of this mutual exchange growth method. This study contributes to the fundamental understanding of topotactic reactions in nanostructures and highlights the potential of MBE in fabricating complex nanomaterials with precise control over composition and structure.

References

[1] Zhao, Y. *et al.* Hybrid-order topology in unconventional magnets of Eu-based Zintl compounds with surface dependent quantum geometry. *Phys. Rev. B* 110, 205111 (2024).

[2] Song, M.S., *et al.* Topotaxial mutual-exchange growth of magnetic Zintl Eu₃In₂As₄ nanowires with axion insulator classification. *Nature Nanotechnology* 1–8 (2024).

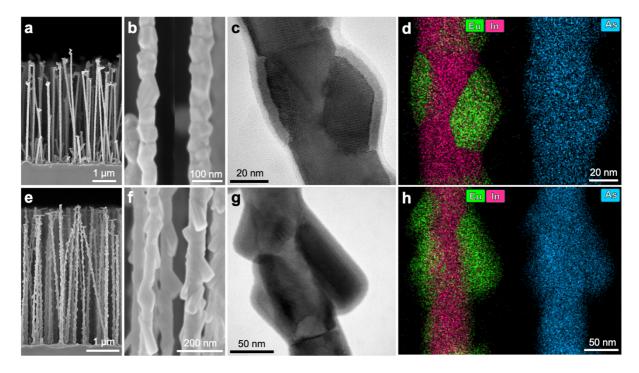


Fig. 1: (a) SEM image of as-grown Eu₃In₂As₄ along WZ InAs NWs. (b) The unique facets characterize the Zintlphase Eu₃In₂As₄. (c) TEM image of Eu₃In₂As₄ grains on a WZ InAs core. (d) EDS elemental maps of Eu, In, and As (green, magenta, and blue respectively), corresponding to the area in (c). The map shows Eu and In distributed on opposite sides of the core boundary, while As is uniformly distributed throughout the core and shell. (e) SEM image of as-grown Eu₅In₂As₆ along ZB InAsSb NWs. (f) The Zintl-phase Eu₅In₂As₆ exhibits anisotropic growth direction preferences. (g) TEM image of Eu₅In₂As₆ grains on a ZB InAsSb core. (h) EDS elemental maps of Eu, In, and As (green, magenta, and blue respectively), corresponding to the area in (g). As in (d), Eu and In are located on opposite sides of the core boundary, with As uniformly distributed across both core and shell.