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ScAlN is a wide bandgap semiconductor with large piezoelectric and spontaneous polarization 

coefficients ensuring a very high charge density at the interface with GaN, which makes it a promising 

barrier layer for HEMTs in view of power switching and RF/mm-wave power amplifier applications. 

Furthermore, it can benefit ferroelectric properties opening the way for new applications. The 

development of the epitaxy of this alloy has started with plasma-assisted MBE, followed by MOVPE. 

More recently, we have demonstrated the feasibility of the growth with ammonia source MBE under 

nitrogen-rich regime and an optimum temperature was identified for the growth of ScxAl1-xN barriers 

quasi-lattice matched on GaN (x~14%) [1]. The advantages of this growth regime in terms of growth 

rate, alloy composition and homogeneity [2] have been demonstrated. HEMT heterostructures have been 

grown on GaN-on-Si and GaN-on-Sapphire templates, demonstrating two-dimensional electron gases 

(2DEGs) with charge densities Ns-cv ranging from 2x1013 to 4x1013/cm2 depending on the nominal 

thickness of the ScAlN barrier which was varied from 5 nm to 25 nm. Functional transistors with 9 µm 

source-drain spacing have been fabricated on these heterostructures. Drain current density exceeds 700 

mA/mm on 10 nm barrier and 1 A/mm on 25 nm barrier (twice the one obtained on our standard 

AlGaN/GaN devices) while a limited gate leakage current could be observed up to a drain voltage of 

100 V. This result is of primary importance as the gate leakage through the ScAlN barrier has been 

reported as a major concern [3]. However, the surface of ScAlN rapidly oxidizes and suffers a lack of 

stability during the device process. For this reason, in-situ grown cap layers such as GaN and AlN have 

been studied. According to Hall effect measurements, the room-temperature electron mobility in the 

2DEG of most of the samples ranges from 500 to about 1000 cm²/V.s depending on the quality of the 

interface between ScAlN and GaN which features a 1-2 nm AlN exclusion layer. The typical 2DEG 

sheet resistances range between 240 and 300 Ohm/sq. In absence of the AlN exclusion layer, the 

resistance rises to 785 ohm/sq. Furthermore, optimizations of the growth of a 10 nm barrier HEMT lead 

to a sheet resistance of 210 ohm/sq, a promising result for the fabrication of high-performance transistors. 
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Fig. 3: Left: X-ray diffraction reciprocal space map around the (10𝟏̅5) node showing the in-plane lattice 

matching of ScAlN with GaN. Centre: high-resolution cross-section transmission electron microscopy view of 

the HEMT interface. Right: transport properties of the ScAlN/GaN HEMTs. 

 

   
 

Fig. 4: DC output characteristics Ids(Vds,Vgs) of 2 µm gate transistors with 9 µm source-drain spacing 

fabricated on the ScAlN/GaN HEMT grown on Silicon with (a) a 25 nm barrier and (b) a 10 nm barrier. (c) Gate 

leakage of the 10 nm barrier HEMT in 3-terminal off-state configuration. 
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Fig. 1: RHEED patterns of the surface of ScAlN (left) capped with AlN (centre) or GaN (right). 
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Fig. 2: Tapping mode atomic force microscopy images showing the morphology of ScAlN (left) capped with 

AlN (centre) or GaN (right). 
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