κ-Ga₂O₃ thin films and related heterostructures grown by Suboxide-MBE and conventional MBE

A. Karg,^{1,*} M. Schowalter,^{1,2} A. Hinz,¹ M. Alonso-Orts,^{1,2} S. Figge,¹ P. Vogt,^{1,3} A.Rosenauer,^{1,2} and M. Eickhoff,^{1,2}

¹Universität Bremen, Institute of Solid State Physics, Bremen, Germany ²Universität Bremen, MAPEX Center for Materials and Processes, Bremen, Germany ³ Max Planck Institute for solid state research, Stuttgart, Germany *karg@uni-bremen.de

The wide-bandgap semiconductor Ga_2O_3 is considered a promising material for high-power electronic devices, benefiting essentially from its large bandgap and the associated high breakdown field strength. The five polymorphs of Ga_2O_3 also exhibit unique material properties ^[1]. Widely investigated is the thermodynamically stable monoclinic β -Ga₂O₃, from which bulk substrates are commercially available ^[2], and precise n-type doping that enables high carrier mobilities has been established ^[3]. However, the primary focus of this contribution is on the metastable orthorhombic κ -Ga₂O₃. Due to its crystal structure, it is assumed to possess a spontaneous polarization along the c-axis, which makes the realization of high sheet carrier densities at heterointerfaces feasible ^[4].

In this study we focus on two key aspects of κ -Ga₂O₃ growth, the stabilization of the metastable polymorph and the realization of heterostructures. Here, we initially demonstrate the growth of the κ phase and discuss the phase stabilization and the growth process using suboxide-MBE (S-MBE) as a novel MBE technique and conventional MBE (C-MBE), both combined with the use of the known additive tin ^[5,6]. The growth regimes in which a phase transformation from β -Ga₂O₃ to κ -Ga₂O₃ occurs are identified and characteristics of the obtained layers are compared.

Additionally, we focus on the growth of Ga₂O₃-based heterostructures using both growth techniques (S-MBE and C-MBE). The study examines the combination of different polymorphs in superlattice heterostructures, specifically β -Ga₂O₃/ κ -Ga₂O₃. This provides through scanning transmission electron microscopy insights into the atomic arrangement of both polymorphs at the interfaces. Furthermore, κ -Ga₂O₃/ κ -(Al,In,Ga)₂O₃ heterostructures are studied and the strain state in κ -Ga₂O₃/ κ -InGaO/ κ -AlGaO heterostructures is investigated ^[7], since fully strained structures are promising candidates for the realization of carrier accumulation at heterointerfaces.

- [1] Roy et al., J.Am.Chem.Soc. 74, 719-722 (1952)
- [2] Galazka et al., Cryst. Res. Technol. 45, 1229-1236 (2010)
- [3] Maccioni et al., Appl. Phys. Express 9, 041102 (2016)
- [4] Kang et al., J. Phys. Condens. Matter 29, 234001 (2017)
- [5] Vogt et al., U.S. Patent No. 11,462,402 (2022)
- [6] Karg et al., J. Appl. Phys. 132, 195304 (2022)
- [7] Karg et al., APL Mater. 11, 091114 (2023)

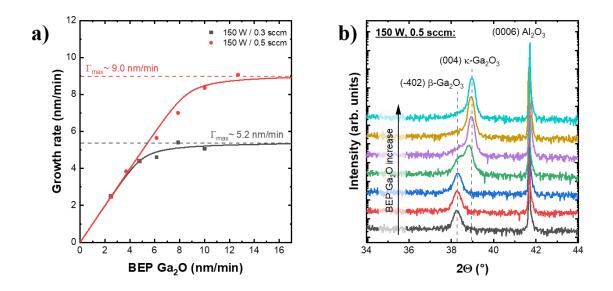


Fig. 1: a) Ga_2O_3 growth rate as a function of gallium suboxide (Ga_2O) flux. For both series grown at different plasma settings, the adsorption-controlled regime with a constant growth rate is reached, indicating the single-step growth mechanism of κ -Ga₂O₃ when using S-MBE. b) XRD spectra of the series grown at 150 W and 0.5 sccm revealing the phase transition from β - to κ -Ga₂O₃ when increasing the Ga₂O flux.

Fig. 1: a) STEM images of a κ -Ga₂O₃/ κ -(In,Ga)₂O₃/ κ -(Al,Ga)₂O₃ heterostructure, showing a sharp distinct transition between the κ -(In,Ga)₂O₃ and κ -(Al,Ga)₂O₃ layer. b) The corresponding reciprocal space map of the heterostructure displayed in a) indicates the pseudomorphic growth throughout the layer sequence ^[7].