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In  recent  years  Machine  Learning  (ML)  has  proven  to  be  an  effective  tool  to  approximate

computationally expensive tasks in materials simulations while retaining a high degree of accuracy

[1]. Here we present an application of Neural Networks (NNs) to continuum models describing the

morphological  evolution  of  thin  heteroepitaxial  films.  The  dynamics  of  this  class  of  system  is

determined, through Partial Differential Equations [2], by the (generalized) chemical potential. This, in

turns, contains surface energy, strain effects and interactions with the underlying substrate. From a

computational study perspective, elastic contributions due to the possible mismatch between the film

and substrate lattice are the most expensive ones to calculate, as closed form analytical expressions are

available only in the small-slope limit  [3].  For a generic free surface profile,  however, the elastic

equilibrium  problem  should  be  solved,  e.g.  through  Finite  Element  Method  (FEM).  This  is  the

principal  computational  bottleneck,  as  a  single  full  evolution  may  require  several  hundreds  of

thousands of FEM calls [4], hindering the study of large systems over long timescales. We show that

an accurate and efficient NN model can be trained to surrogate the full FEM solution, with a speed up

of ~4 orders of magnitude for simulations. Importantly, building the dataset required for the training

procedure  has  a  computational  cost  which  is  comparable  to  a  single,  small  computational  cell

evolution.

For simplicity, the 2D, isotropic case will  be discussed, using Ge on Si(001) as a prototypical

system [5], although the method generalize to more complex scenarios. Once the NN is trained, it may

be  used  to  run  simulations  involving  coarsening  and growth  with  a  several  orders  of  magnitude

reduction in the computational costs, pushing forward the limits of tractable systems both in terms of

time and spatial scales.
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Figure  1:  Neural  Network  (NN)
scheme.  The  NN  is  used  to
approximate  the  mapping  between
the free surface profile h(x) and the
elastic energy density ⍴

Figure  2: Once the NN is trained, it can be used to perform simulations
over larger computational cells at a reduced computational cost, reaching
longer time scales


